Double-well atom trap for fluorescence detection at the Heisenberg limit
نویسندگان
چکیده
We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic ensembles with single-atom resolution. Such a sensitivity is a prerequisite for quantum metrology at a precision approaching the Heisenberg limit. Our system is based on fluorescence detection of atoms in a hybrid trap in which a dipole barrier divides a magneto-optical trap into two separated wells. We introduce a noise model describing the various sources contributing to the measurement error and report a limit of up to 500 atoms for single-atom resolution in the atom number difference.
منابع مشابه
Dissipative Double-Well Potential: Mesoscopic Atom Number Detection and Cold Atom Dynamics
吀�e ability to manipulate cold atoms has been constantly improved over the past three decades in an endeavour to achieve the best control and the best detection of these particles. Atom-light interaction has proven fundamental for the cooling and trapping of neutral atoms and several detection techniques have been developed, including absorption and fluorescence imaging. Here we present a detec...
متن کاملSynthesis and Characterization of Zn3 (BTC)2 Nanoporous Sorbent for Sampling from Benzo[a]pyren using Needle Trap in the Air
Introduction: In this study, Zn3(Btc)2 (metal organic framework) sorbent was introduced for sampling of Benzo[a]pyren from the air. The purpose of this study was to develop the sampling and analysis method by needle trap, with no sample preparation step. Material and method: Zn3(Btc)2 sorbent was electrochemically synthesized and its properties were specified by FTIR, FE-SEM, and PXRD techniqu...
متن کاملA cavity-QED scheme for Heisenberg-limited interferometry
We propose a Ramsey interferometry experiment using an entangled state of N atoms to reach the Heisenberg limit for the estimation of an atomic phase shift if the atom number parity is perfectly determined. In a more realistic situation, due to statistical fluctuations of the atom source and the finite detection efficiency, the parity is unknown. We then achieve about half the Heisenberg limit....
متن کاملDeterministic delivery of a single atom.
We report the realization of a deterministic source of single atoms. A standing-wave dipole trap is loaded with one or any desired number of cold cesium atoms from a magneto-optical trap. By controlling the motion of the standing wave, we adiabatically transport the atom with submicrometer precision over macroscopic distances on the order of a centimeter. The displaced atom is observed directly...
متن کاملCollective state measurement of mesoscopic ensembles with single-atom resolution.
We demonstrate single-atom resolution, as well as detection sensitivity more than 20 dB below the quantum projection noise limit, for hyperfine-state-selective measurements on mesoscopic ensembles containing 100 or more atoms. The measurement detects the atom-induced shift of the resonance frequency of an optical cavity containing the ensemble. While spatially varying coupling of atoms to the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015